Human Active Learning
نویسندگان
چکیده
We investigate a topic at the interface of machine learning and cognitive science. Human active learning, where learners can actively query the world for information, is contrasted with passive learning from random examples. Furthermore, we compare human active learning performance with predictions from statistical learning theory. We conduct a series of human category learning experiments inspired by a machine learning task for which active and passive learning error bounds are well understood, and dramatically distinct. Our results indicate that humans are capable of actively selecting informative queries, and in doing so learn better and faster than if they are given random training data, as predicted by learning theory. However, the improvement over passive learning is not as dramatic as that achieved by machine active learning algorithms. To the best of our knowledge, this is the first quantitative study comparing human category learning in active versus passive settings.
منابع مشابه
The Role of Class Scale in Promotion of Students’ Participation in Active Learning Process (Case Study: Male Students of a Secondary School in Shiraz)
Perception and experience gained in the contemporary school could not help human beings' active learning. Totally, participation is the main element in active learning and thus, the active participation of students in the learning process is emphasized by education and learning in secondary schools. Given the importance of active learning, in this paper, the effective components in this type of...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملReflective Learning and Teaching: A Review
Introduction: One of the most important characteristic of human being is his ability to learn. Structuralists believe that learning is an active process through which learners explores the principles, meanings and facts by themselves. Learner’s participation in learning process is one of the active learning strategies and reflective learning is considered as an active teaching method which is i...
متن کاملMachine Learning and Citizen Science: Opportunities and Challenges of Human-Computer Interaction
Background and Aim: In processing large data, scientists have to perform the tedious task of analyzing hefty bulk of data. Machine learning techniques are a potential solution to this problem. In citizen science, human and artificial intelligence may be unified to facilitate this effort. Considering the ambiguities in machine performance and management of user-generated data, this paper aims to...
متن کاملGender Inequality in the Lived Experience of Social and Cultural Active Kurdish Women
This study has reviewed the lived experience of social and cultural active Kurdish women using qualitative methods and the Grounded Theory. The purpose of this study is identifying their attitude and practical responses to "gender inequality". Due to comparing two different aspects of these women's lived experience, at the end of the study, two paradigmatic models are obtained. The analysis of ...
متن کاملActive Learning: An Approach for Reducing Theory-Practice Gap in Clinical Education
Introduction: The gap between theory and practice in clinical fields, including nursing, is one of the main problems that many solutions have been suggested to eliminate it. In this article, we have tried to investigate its solution through active learning. Methods: In this review article, searching articles published during 2000-2012 was done through library references, scientific databases. ...
متن کامل